Off Topic The Science Only Thread

  • Please bear with us on the new site integration and fixing any known bugs over the coming days. If you can not log in please try resetting your password and check your spam box. If you have tried these steps and are still struggling email [email protected] with your username/registered email address
  • Log in now to remove adverts - no adverts at all to registered members!
And people think his work will be forgotten in a few years time<laugh>
 
First climate change is backed up by the most extreme weather on record and now gravitational waves and black holes have been [HASHTAG]#confirmed[/HASHTAG] by direct observation

Bad month for Sisu

[HASHTAG]#ouch[/HASHTAG]
 
  • Like
Reactions: Peter Saxton
First climate change is backed up by the most extreme weather on record and now gravitational waves and black holes have been [HASHTAG]#confirmed[/HASHTAG] by direct observation

Bad month for Sisu

[HASHTAG]#ouch[/HASHTAG]

Climate and weather are not linked remember.

It was very cold in Finland this winter so logic points to global warming being a myth. As for Einstein, his work will be forgotten soon enough [HASHTAG]#youclimatards[/HASHTAG]
 
  • Like
Reactions: Peter Saxton
**** wind farms. Inefficient, eye sores which make rich land owners richer and kill birds!

Give me a giant nuclear power station any day of the week!
 
**** wind farms. Inefficient, eye sores which make rich land owners richer and kill birds!

Give me a giant nuclear power station any day of the week!

As long as they're all in Scotland or Wales like
 
  • Like
Reactions: afcftw
Gravity waves from black holes verify Einstein’s prediction
LIGO experiment reports first detection of spacetime vibrations, opening new window to the cosmos
BY
ANDREW GRANT
10:30AM, FEBRUARY 11, 2016
You must log in or register to see images

SWEET SUCCESS For the first time, physicists have directly observed gravitational waves, caused by two black holes colliding (illustrated here).

SXS

SPONSOR MESSAGE
WASHINGTON — Tremors in the cosmic fabric of space and time have finally been detected, opening a new avenue for exploring the universe.

The historic discovery of those tremors, known as gravitational waves, comes almost exactly a century after Albert Einstein first posited their existence. Researchers with the Advanced Laser Interferometer Gravitational-Wave Observatory, or Advanced LIGO, announced the seminal detection February 11 at a news conference and in a paper in Physical Review Letters. The gravitational swell originated more than 750 million light-years away, where the high-speed dance of two converging black holes shook the very foundation upon which planets, stars and galaxies reside.

“It's the first time the universe has spoken to us through gravitational waves,” LIGO laboratory executive director David Reitze said at the news conference.

The discovery immediately becomes a likely candidate for a Nobel Prize, and not just because it ties a neat bow around decades of evidence supporting a major prediction of Einstein’s 1915 general theory of relativity. “Gravitational waves allow us to look at the universe not just with light but with gravity,” says Shane Larson, an astrophysicist at Northwestern University in Evanston, Ill. Gravitational waves can expose the gory details of black holes and other extreme phenomena that can’t be obtained with traditional telescopes. With this discovery, the era of gravitational wave astronomy has begun.

You must log in or register to see images

Gravitational waves from a collision between two black holes came from roughly 1.3 billion light-years away, most likely in the direction of the Magellanic clouds, two satellite galaxies of the Milky Way (smudges of light at bottom center). The colors represent different probabilities for where the signal originated.
LIGO


The detection occurred on September 14, 2015, four days before the official start of observations for the newly upgraded observatory. Striking gold so quickly raises hopes for an impending flurry of sightings.

The fleeting burst of waves arrived on Earth long after two black holes, one about 36 times the mass of the sun and the other roughly 29, spiraled toward each other and coalesced. If Isaac Newton had been right about gravity, then the mass of the two black holes would have exerted an invisible force that pulled the objects together. But general relativity maintains that those black holes merged because their mass indented the fabric of space and time (SN: 10/17/15, p. 16). As the black holes drew near in a deepening pit of spacetime, they also churned up that fabric, emitting gravitational radiation (or gravity waves, as scientists often call them). Unlike more familiar kinds of waves, these gravitational ripples don’t travel “through” space; they are vibrations of spacetime itself, propagating outward in all directions at the speed of light.

Nearly every instance of an object accelerating generates gravity waves — you produced feeble ones getting out of bed this morning. Advanced LIGO is fine-tuned to home in on more detectable (and scientifically relevant) fare: waves emitted from regions where a lot of mass is packed into small spaces and moving very quickly. These black holes certainly qualify. Their tremendous mass was packed into spheres about 150 kilometers in diameter. By the time the black holes experienced their final unifying plunge, they were circling each other at about half the speed of light. On September 14 at 4:50 a.m. Eastern time, the gravity waves emitted by the black holes during their last fractions of a second of independence encountered the two L-shaped LIGO detectors.
LIGO’s detectors in Hanford, Wash., and Livingston, La., newly reactivated after five years of upgrades, each consist of a powerful laser that splits into two perpendicular, 4-kilometer-long beams. When the gravitational waters of spacetime are calm, the beams recombine at the junction and cancel each other out — the troughs of one beam’s 1,064-nanometer waves of laser light completely negate the crests of the second beam’s waves.


You must log in or register to see images

The two LIGO detectors registered nearly identical signals (top and middle) almost simultaneously as gravitational waves from a black hole collision passed by the Earth. The measured signals also closely match with predictions of what such a signal should look like.
LIGO


But the gravitational disturbance from the black hole pair distorted spacetime, slightly squeezing one arm of the detector while stretching the other (SN: 1/8/00, p. 26).When the beams recombined, the light no longer matched up perfectly. The detectors sensed that crest missed trough by the tiniest of distances, about a thousandth the diameter of a proton.
The LIGO facilities registered the signal just 7 milliseconds apart, indicating a light-speed pulse from deep space rather than a slower-moving vibration from an underground quake or a big rig rumbling along the highway. Physicists used the combined measurements to estimate a distance of 750 million to 1.8 billion light-years to the black holes. At least one more detector, preferably two, would be needed to triangulate the precise location of the black holes in the sky.

While the rendezvous was millions of years in the making, only the final two-tenths of a second produced gravity waves with the requisite intensity and frequency for detection by Advanced LIGO. Those two-tenths of a second told quite a story. At first, the black holes were circling each other about 17 times a second; by the end, it was 75. The gravity wave frequency and intensity reached a peak, and then the black holes merged. The show was over.

Combining the wave measurements with computer simulations, the scientists determined that a pair of 36- and 29-solar-mass black holes had become one 62-solar-mass beast. The missing three suns’ worth of mass had been transformed into energy (Einstein again, E=mc2) and carried away in the form of gravity waves. The power output during that mass-energy conversion exceeded that of all the stars in the universe combined.

The observed signal matches what physicists expected from a black hole merger almost perfectly. Ingrid Stairs, an astrophysicist at the University of British Columbia not involved with LIGO, says she and her colleagues were “bowled over by how beautiful it was.” Translated into sound, the signal resembled a rumbling followed by a chirp. “It stood out like a sore thumb,” says Rainer Weiss, one of the primary architects of LIGO. “We didn’t expect anything this big.” Weiss had visited Livingston just days before and almost shut down the detector to fix some minor problems. Had he done so, “we would have missed it.”

Despite the seeming no-doubt signal, LIGO researchers conducted a series of rigorous statistical tests. The signal survived. “I have great confidence in the team as a whole and everything they’ve done with the data,” Stairs says.

LIGO’s announcement falls between two very relevant centennials: Einstein’s introduction of general relativity (November 1915) and his prediction of gravitational waves (June 1916, though he had to fix the math two years later). Russell Hulse and Joseph Taylor Jr. won the 1993 Nobel Prize in physics for deducing gravity wave emission based on the motion of a stellar corpse called a neutron star and a closely orbiting companion. Now Advanced LIGO has sealed the deal with the first direct measurement.

The observatory achieved what its predecessor, which ran from 2001 to 2010, could not because of a five-year upgrade that enhanced sensitivity by at least a factor of three. Increased sensitivity translates to identifying more distant objects: If the search area of first-generation LIGO included all the space that could fit within a baseball, Advanced LIGO could spot everything inside a basketball. The comparison to everyday-sized objects ends there. Advanced LIGO’s range extends up to 5 billion light-years in all directions for merging objects about 100 times the mass of the sun, project leader David Shoemaker of MIT says. That extended reach, plus an extra boost in sensitivity at the wave frequencies associated with black holes, enabled the historic detection.

This ability to examine black holes and other influential dark objects without actually “seeing” them with light has scientists excited about the gravitational wave era. Black holes gobble up some matter and launch the rest away in powerful jets, scattering atoms within and between galaxies; pairs of neutron stars, also targets of Advanced LIGO, may ultimately trigger gamma-ray bursts, among the brightest and most energetic explosions known in the universe.

Yet while the influence of these cosmic troublemakers is sometimes visible with traditional telescopes, the objects themselves are not. Gravity waves offer a direct probe, and as a bonus they don’t get impeded by gas, dust and other cosmic absorbers as light does. “It opens up a new window into astronomy that we never had,” says John Mather, a Nobel-winning astrophysicist in attendance at the news conference. Before this discovery, scientists had never observed a pair of black holes orbiting each other. A big next step, scientists say, is to observe a nearby supernova or the collision of neutron stars via both gravity waves and light.

Gravitational wave astronomy has begun with the Advanced LIGO detection, but there’s lots more to come. LIGO scientists still have three months of data to sort through from their first round of observing, and the analysis of the signal suggests similar events should occur multiple times a year. At the same time, the researchers are upgrading the detectors so that they can spot neutron star and black hole collisions even farther away. The observatory should be back up and running by late summer, says LIGO chief detector scientist Peter Fritschel.

Later this year, European partners of the LIGO collaboration plan to restart their revamped gravity wave observatory, Advanced Virgo, near Pisa, Italy, providing a crucial third ultrasensitive detector for pinpointing gravity wave sources. Similar detectors are in the works for Japan and India.

Researchers designed LIGO to spot waves in the sweet spot for converging black holes and neutron stars, with a frequency ranging from tens of hertz to several thousand. But just as scientists use radio and gamma-ray telescopes to probe different frequencies of light, physicists are building detectors sensitive to a range of gravity wave frequencies. The eLISA mission, a space observatory consisting of three miniature satellites, will hunt for waves with frequencies under 1 hertz when it launches in the 2030s. The satellite trio should be able to resolve black holes from the early universe as well as hefty ones millions of times the mass of the sun. On January 22, a satellite designed to test eLISA technology settled into orbit around the sun about 1.5 million kilometers away. “We have detection techniques at various frequencies that are all becoming viable at roughly the same time,” Northwestern’s Larson says.

The LIGO result is not relevant to the 2014 claim of a gravity wave sighting, since rescinded, by scientists with the BICEP2 telescope near the South Pole (SN: 2/21/15, p. 13). BICEP2 and similar telescopes hunt for gravity waves with a much lower frequency, signaling reverberations from a split-second span just after the Big Bang called inflation, when space itself stretched rapidly. Though not detectable directly, these inflation-era gravity waves should be encoded in the universe’s earliest light, the cosmic microwave background.

Scientists may well detect those flavors of gravitational waves very soon. But for now, they can bask in a discovery 100 years in the making. “This was truly a scientific moonshot,” Reitze said. “We did it. We landed on the moon.”

Massive news. Sis????
 
Gravity waves from black holes verify Einstein’s prediction
LIGO experiment reports first detection of spacetime vibrations, opening new window to the cosmos
BY
ANDREW GRANT
10:30AM, FEBRUARY 11, 2016
You must log in or register to see images

SWEET SUCCESS For the first time, physicists have directly observed gravitational waves, caused by two black holes colliding (illustrated here).

SXS

SPONSOR MESSAGE
WASHINGTON — Tremors in the cosmic fabric of space and time have finally been detected, opening a new avenue for exploring the universe.

The historic discovery of those tremors, known as gravitational waves, comes almost exactly a century after Albert Einstein first posited their existence. Researchers with the Advanced Laser Interferometer Gravitational-Wave Observatory, or Advanced LIGO, announced the seminal detection February 11 at a news conference and in a paper in Physical Review Letters. The gravitational swell originated more than 750 million light-years away, where the high-speed dance of two converging black holes shook the very foundation upon which planets, stars and galaxies reside.

“It's the first time the universe has spoken to us through gravitational waves,” LIGO laboratory executive director David Reitze said at the news conference.

The discovery immediately becomes a likely candidate for a Nobel Prize, and not just because it ties a neat bow around decades of evidence supporting a major prediction of Einstein’s 1915 general theory of relativity. “Gravitational waves allow us to look at the universe not just with light but with gravity,” says Shane Larson, an astrophysicist at Northwestern University in Evanston, Ill. Gravitational waves can expose the gory details of black holes and other extreme phenomena that can’t be obtained with traditional telescopes. With this discovery, the era of gravitational wave astronomy has begun.

You must log in or register to see images

Gravitational waves from a collision between two black holes came from roughly 1.3 billion light-years away, most likely in the direction of the Magellanic clouds, two satellite galaxies of the Milky Way (smudges of light at bottom center). The colors represent different probabilities for where the signal originated.
LIGO


The detection occurred on September 14, 2015, four days before the official start of observations for the newly upgraded observatory. Striking gold so quickly raises hopes for an impending flurry of sightings.

The fleeting burst of waves arrived on Earth long after two black holes, one about 36 times the mass of the sun and the other roughly 29, spiraled toward each other and coalesced. If Isaac Newton had been right about gravity, then the mass of the two black holes would have exerted an invisible force that pulled the objects together. But general relativity maintains that those black holes merged because their mass indented the fabric of space and time (SN: 10/17/15, p. 16). As the black holes drew near in a deepening pit of spacetime, they also churned up that fabric, emitting gravitational radiation (or gravity waves, as scientists often call them). Unlike more familiar kinds of waves, these gravitational ripples don’t travel “through” space; they are vibrations of spacetime itself, propagating outward in all directions at the speed of light.

Nearly every instance of an object accelerating generates gravity waves — you produced feeble ones getting out of bed this morning. Advanced LIGO is fine-tuned to home in on more detectable (and scientifically relevant) fare: waves emitted from regions where a lot of mass is packed into small spaces and moving very quickly. These black holes certainly qualify. Their tremendous mass was packed into spheres about 150 kilometers in diameter. By the time the black holes experienced their final unifying plunge, they were circling each other at about half the speed of light. On September 14 at 4:50 a.m. Eastern time, the gravity waves emitted by the black holes during their last fractions of a second of independence encountered the two L-shaped LIGO detectors.
LIGO’s detectors in Hanford, Wash., and Livingston, La., newly reactivated after five years of upgrades, each consist of a powerful laser that splits into two perpendicular, 4-kilometer-long beams. When the gravitational waters of spacetime are calm, the beams recombine at the junction and cancel each other out — the troughs of one beam’s 1,064-nanometer waves of laser light completely negate the crests of the second beam’s waves.


You must log in or register to see images

The two LIGO detectors registered nearly identical signals (top and middle) almost simultaneously as gravitational waves from a black hole collision passed by the Earth. The measured signals also closely match with predictions of what such a signal should look like.
LIGO


But the gravitational disturbance from the black hole pair distorted spacetime, slightly squeezing one arm of the detector while stretching the other (SN: 1/8/00, p. 26).When the beams recombined, the light no longer matched up perfectly. The detectors sensed that crest missed trough by the tiniest of distances, about a thousandth the diameter of a proton.
The LIGO facilities registered the signal just 7 milliseconds apart, indicating a light-speed pulse from deep space rather than a slower-moving vibration from an underground quake or a big rig rumbling along the highway. Physicists used the combined measurements to estimate a distance of 750 million to 1.8 billion light-years to the black holes. At least one more detector, preferably two, would be needed to triangulate the precise location of the black holes in the sky.

While the rendezvous was millions of years in the making, only the final two-tenths of a second produced gravity waves with the requisite intensity and frequency for detection by Advanced LIGO. Those two-tenths of a second told quite a story. At first, the black holes were circling each other about 17 times a second; by the end, it was 75. The gravity wave frequency and intensity reached a peak, and then the black holes merged. The show was over.

Combining the wave measurements with computer simulations, the scientists determined that a pair of 36- and 29-solar-mass black holes had become one 62-solar-mass beast. The missing three suns’ worth of mass had been transformed into energy (Einstein again, E=mc2) and carried away in the form of gravity waves. The power output during that mass-energy conversion exceeded that of all the stars in the universe combined.

The observed signal matches what physicists expected from a black hole merger almost perfectly. Ingrid Stairs, an astrophysicist at the University of British Columbia not involved with LIGO, says she and her colleagues were “bowled over by how beautiful it was.” Translated into sound, the signal resembled a rumbling followed by a chirp. “It stood out like a sore thumb,” says Rainer Weiss, one of the primary architects of LIGO. “We didn’t expect anything this big.” Weiss had visited Livingston just days before and almost shut down the detector to fix some minor problems. Had he done so, “we would have missed it.”

Despite the seeming no-doubt signal, LIGO researchers conducted a series of rigorous statistical tests. The signal survived. “I have great confidence in the team as a whole and everything they’ve done with the data,” Stairs says.

LIGO’s announcement falls between two very relevant centennials: Einstein’s introduction of general relativity (November 1915) and his prediction of gravitational waves (June 1916, though he had to fix the math two years later). Russell Hulse and Joseph Taylor Jr. won the 1993 Nobel Prize in physics for deducing gravity wave emission based on the motion of a stellar corpse called a neutron star and a closely orbiting companion. Now Advanced LIGO has sealed the deal with the first direct measurement.

The observatory achieved what its predecessor, which ran from 2001 to 2010, could not because of a five-year upgrade that enhanced sensitivity by at least a factor of three. Increased sensitivity translates to identifying more distant objects: If the search area of first-generation LIGO included all the space that could fit within a baseball, Advanced LIGO could spot everything inside a basketball. The comparison to everyday-sized objects ends there. Advanced LIGO’s range extends up to 5 billion light-years in all directions for merging objects about 100 times the mass of the sun, project leader David Shoemaker of MIT says. That extended reach, plus an extra boost in sensitivity at the wave frequencies associated with black holes, enabled the historic detection.

This ability to examine black holes and other influential dark objects without actually “seeing” them with light has scientists excited about the gravitational wave era. Black holes gobble up some matter and launch the rest away in powerful jets, scattering atoms within and between galaxies; pairs of neutron stars, also targets of Advanced LIGO, may ultimately trigger gamma-ray bursts, among the brightest and most energetic explosions known in the universe.

Yet while the influence of these cosmic troublemakers is sometimes visible with traditional telescopes, the objects themselves are not. Gravity waves offer a direct probe, and as a bonus they don’t get impeded by gas, dust and other cosmic absorbers as light does. “It opens up a new window into astronomy that we never had,” says John Mather, a Nobel-winning astrophysicist in attendance at the news conference. Before this discovery, scientists had never observed a pair of black holes orbiting each other. A big next step, scientists say, is to observe a nearby supernova or the collision of neutron stars via both gravity waves and light.

Gravitational wave astronomy has begun with the Advanced LIGO detection, but there’s lots more to come. LIGO scientists still have three months of data to sort through from their first round of observing, and the analysis of the signal suggests similar events should occur multiple times a year. At the same time, the researchers are upgrading the detectors so that they can spot neutron star and black hole collisions even farther away. The observatory should be back up and running by late summer, says LIGO chief detector scientist Peter Fritschel.

Later this year, European partners of the LIGO collaboration plan to restart their revamped gravity wave observatory, Advanced Virgo, near Pisa, Italy, providing a crucial third ultrasensitive detector for pinpointing gravity wave sources. Similar detectors are in the works for Japan and India.

Researchers designed LIGO to spot waves in the sweet spot for converging black holes and neutron stars, with a frequency ranging from tens of hertz to several thousand. But just as scientists use radio and gamma-ray telescopes to probe different frequencies of light, physicists are building detectors sensitive to a range of gravity wave frequencies. The eLISA mission, a space observatory consisting of three miniature satellites, will hunt for waves with frequencies under 1 hertz when it launches in the 2030s. The satellite trio should be able to resolve black holes from the early universe as well as hefty ones millions of times the mass of the sun. On January 22, a satellite designed to test eLISA technology settled into orbit around the sun about 1.5 million kilometers away. “We have detection techniques at various frequencies that are all becoming viable at roughly the same time,” Northwestern’s Larson says.

The LIGO result is not relevant to the 2014 claim of a gravity wave sighting, since rescinded, by scientists with the BICEP2 telescope near the South Pole (SN: 2/21/15, p. 13). BICEP2 and similar telescopes hunt for gravity waves with a much lower frequency, signaling reverberations from a split-second span just after the Big Bang called inflation, when space itself stretched rapidly. Though not detectable directly, these inflation-era gravity waves should be encoded in the universe’s earliest light, the cosmic microwave background.

Scientists may well detect those flavors of gravitational waves very soon. But for now, they can bask in a discovery 100 years in the making. “This was truly a scientific moonshot,” Reitze said. “We did it. We landed on the moon.”

Massive news. Sis????

Someone needs to find all and replace. Ligo for lego.
 
Not having that, not with the scientific communities willingness to 'adjust' data. Next they will be saying they are going back to the moon<laugh>
 
  • Like
Reactions: Peter Saxton
Support grows for a return to ice giants Uranus and Neptune
The solar system's two most distant worlds may be ready to give up their secrets
BY
CHRISTOPHER CROCKETT
6:30AM, FEBRUARY 10, 2016
You must log in or register to see images

THE OTHER BLUE PLANETS Uranus (left) and Neptune (right) have not been visited since Voyager 2 sped by in the late 1980s. Many researchers argue that it’s time to go back.

BOTH: JPL-CALTECH/NASA

Magazine issue: Vol. 189, No. 4, February 20, 2016, p. 24
SPONSOR MESSAGE
In the cold periphery of the solar system, two enigmatic sentinels saunter around the sun. One circuit along their vast orbits takes on the order of a century. Seasons are measured in decades. At such great distances from Earth, these worlds give up their secrets slowly. While every other planet in our solar system has been repeatedly poked and prodded by orbiters and landers, Neptune and Uranus, save a brief tour in the 1980s, remain largely unexplored.

Thirty years ago, the Voyager 2 spacecraft tore past Uranus, then flew by Neptune less than four years later. These quick sojourns introduced scientists to two planets that had been vague blue splotches in their telescopes. In the years since, bigger and better instruments have teased out a bit more information and revealed a few surprises.

But there’s only so much planetary scientists can learn from a couple billion kilometers away. That’s why researchers in both the United States and Europe think it’s time to go back to Uranus or Neptune — the solar system’s “ice giants.” Unlike the show-stopping flyby of Pluto in 2015, a new mission to one of the blue worlds would have more time to take in the view.

In August, NASA’s Jim Green gave engineers at the Jet Propulsion Laboratory in Pasadena, Calif., one year to figure out what it would take to put a spacecraft in orbit around Uranus or Neptune. These worlds are “an important frontier,” says Green, director of the Planetary Science Division at NASA headquarters in Washington, D.C. “We really don’t know much about them.” New rocket designs and recent exoplanet discoveries have made the ice giants more accessible and more relevant than ever. “This is a really exciting time for us to be able to study them,” he says.

The ice giants aren’t frozen orbs; they’re actually quite gassy. But Uranus and Neptune have a lot of water, ammonia and methane, which astronomers refer to as ices, whether the compounds are frozen or not. Jupiter and Saturn, by comparison, are mostly hydrogen and helium, which remain gases at nearly any temperature. The inner planets are relatively tiny balls of rock.

Story continues after slideshow



You must log in or register to see images






You must log in or register to see images

As Voyager 2 departed Uranus for Neptune, the spacecraft turned around and snapped this picture of a crescent Uranus on January 25, 1986. The blue-green hue comes from reflected sunlight filtered through methane in the planet’s atmosphere.
JPL-CALTECH/NASA
You must log in or register to see images

Storms and bands appear in the atmosphere of Uranus in these false-color infrared images of the sideways planet taken at the Keck Observatory in Hawaii in 2014. Uranus’ dark rings appear red because of the color balance used in combining images taken at three infrared wavelengths.
L. SROMOVSKY/UNIVERSITY OF WISCONSIN-MADISON, W. M. KECK OBSERVATORY
You must log in or register to see images

White clouds dance around Neptune’s Great Dark Spot, a storm roughly the size of Earth, in this August 23, 1989, picture from Voyager 2. The spot had vanished by the time the Hubble Space Telescope got a look in 1994. Other spots have since come and gone, as well.
JPL-CALTECH/NASA
You must log in or register to see images

Neptune looms behind its largest moon Triton (bottom) in this parting shot of the two crescent worlds taken by Voyager 2 three days after its closest approach to the planet. The spacecraft has been silently sailing toward interstellar space ever since.
JPL-CALTECH/NASA
You must log in or register to see images

Scheduled to debut in 2018, NASA’s next-generation heavy-lift rocket, the Space Launch System (illustrated), might be able to shave several years off a journey to either Uranus or Neptune. In its most powerful configuration, it will generate 9.2 million pounds of thrust at liftoff — 20 percent more thrust than the Saturn V rocket that launched the Apollo astronauts toward the moon in 1969.
MARSHALL SPACE FLIGHT CENTER/NASA










Astronomers have learned a lot in the three decades since Voyager. Researchers now know that as the giant planets jockeyed for position more than 4 billion years ago, Uranus and Neptune helped create the Kuiper belt, the ring of icy debris that is home to many comets. And when Voyager 2 departed Neptune in 1989, astronomers knew only of the planets that orbit the sun. Since then, researchers have cataloged about 2,000 planets around other stars, and the Kepler space telescope has shown that the most common type is the size of Uranus and Neptune. Ice giants, or something like them, might be the most popular type of planet in the galaxy.

“We barely understand the two in our own backyard, and we’re finding so many around other stars,” says Candice Hansen, a planetary scientist with the Planetary Science Institute in Tucson, Ariz. “How do we interpret these planets around other stars if we barely know our own?”

A closer look
Uranus and Neptune are the only planets (sorry, Pluto) in the solar system to be discovered since the invention of the telescope (for hints of a new planet, see SN: 2/20/16, p. 6); the others have been known since antiquity. William Herschel stumbled upon Uranus in 1781; astronomer Johann Galle spotted Neptune in 1846, almost exactly where mathematicians Urbain Le Verrier and John Couch Adams predicted an eighth planet should be.

Story continues after graphic



arrived at Uranus on January 24, 1986, it was greeted by a bland world. The aquamarine cloud deck showed very little activity, earning Uranus a nickname of “the boring planet.” Voyager did pick up an unusually complex magnetic field and a few new rings. The spacecraft also got a good look at the planet’s posse of icy moons, including Miranda, a strange satellite that looks like someone smashed it apart and then hastily glued it back together.

Three years and seven months later, Voyager 2 soared over the north pole of Neptune, where it found a much more vibrant planet. The royal blue atmosphere churned with storms, and a blemish nicknamed the Great Dark Spot reminded scientists of the colossal red storm on Jupiter. Voyager clocked clouds on Neptune moving at more than 2,000 kilometers per hour — the fastest recorded winds in the solar system. On Neptune’s largest moon, Triton, cryovolcanoes erupted over pitted terrains, hinting at geologic engines churning inside.

But many mysteries remain that are challenging if not impossible to wrestle with from Earth. Uranus gives off very little heat, while the more distant Neptune is by comparison a planet-sized furnace. Magnetic fields emanating from both worlds are unlike those seen at other planets: The fields are significantly tilted from the spin axes and appear to be generated far from either planet’s core. Neptune’s rings clump together into arcs while the ones around Uranus possibly reach down into its atmosphere. Half of the real estate among Uranus’ moons remains uncharted.


You must log in or register to see images

Storms (bright spots) erupt in 2014 on normally sleepy Uranus, seen in these infrared images from the Keck Observatory.
BOTH: IMKE DE PATER (UC BERKELEY), LARRY SROMOVSKY AND PAT FRY (U. WISCONSIN), HEIDI HAMMEL (AURA)/KECK OBSERVATORY
The Voyagers transformed astronomers’ view of the ice giants and did so with instruments built in the 1970s. Both Voyager 1 and 2 launched in 1977, the same year as the first mass-produced Apple computer (the Apple II) and the Atari 2600 video game system. “That’s the technology we used to explore the ice giants,” Hammel says. “If we put my iPhone on a spacecraft and sent it out there, we’d have better image quality.”


Since then, premier observatories such as the Keck telescopes in Hawaii and the Hubble Space Telescope in low Earth orbit have pushed beyond Voyager’s legacy. They’ve picked up rumblings from Uranus, which seems to be waking up. As southern summer on Uranus gave way to fall in the mid-2000s, storms appeared and the atmosphere looked more like Neptune’s. “Our idea of a boring blue ball probably wasn’t quite correct,” says Amy Simon, a planetary scientist at NASA’s Goddard Space Flight Center in Greenbelt, Md.

But sophisticated telescopes have their limits. “Getting images of the planets is nowhere near enough,” says Leigh Fletcher, a planetary scientist at the University of Oxford. “To understand the physics and the chemistry, you need to be there.”

Go big or go home
In 2010, researchers in Europe tried to persuade the European Space Agency to pursue a Uranus orbiter as a “medium-class” mission, at a cost of roughly 500 million euros. That failed bid was followed by an opportunity in 2013 for a more comprehensive “large-class” — or 1 billion euro — mission, and a 2014 request for medium-class mission ideas. ESA ranked the ice giant proposals high every time, but not high enough to be funded. The agency will issue another call for medium-class missions this spring, but it’s a tough sell, Fletcher says.

One problem for Europe is that it doesn’t have access to the nuclear energy needed for travel so far from the sun, where solar panels are useless. NASA, however, is funding production of plutonium-238, a radioactive element whose heat, once transformed into electricity, can power a remote spacecraft. “The whole landscape would change if there was a strong push from NASA to fly one of these missions,” Fletcher says.

Fletcher and his European colleagues just might get their wish. In 2011, the U.S. planetary science community ranked Mars, Europa and Uranus as the top priorities in the coming decade for a NASA flagship, its biggest (and most costly) mission class (SN: 4/9/11, p. 16). Plans for Mars and Europa are under way. By September, JPL will present NASA with some ideas for an ice giant flagship including details on what the space agency needs to invest in to accomplish its science goals.

What exactly that science entails depends on which ice giant the spacecraft visits. Each planet has appeal. Because Uranus is knocked over on its side, its seasons are extreme; the poles see 42-year stretches of continual sunlight followed by equally long periods of darkness. That makes Uranus a great testing ground for ideas about how planets work, Fletcher says, by seeing how these theories hold up on a sideways planet. Point for Uranus.


You must log in or register to see images

DISTANT FAMILIES The rings and moons of Uranus (left) glow in a 2002 image from the Very Large Telescope. A horde of satellites orbit Neptune (right) in an illustration based on Hubble Space Telescope images taken one Neptune year (164 Earth years) after the planet’s discovery.
LEFT: EUROPEAN SOUTHERN OBSERVATORY; RIGHT: NASA, ESA, Z. LEVAY/STSCI


On the other hand, maybe Uranus is a little too weird. Neptune might be the better target for understanding how a typical ice giant behaves, which is important for understanding many of the planets orbiting other stars. Voyager 2 already showed that Neptune’s atmosphere is churning with storms, offering plenty of fascinating details to pore over. Uranus, though starting to stir, is relatively sedate. Point for Neptune.

When it comes to the moons, the situation is reversed. “If we go to Neptune, we’ll see a normal planet but not normal satellites,” says Mark Hofstadter, a planetary scientist at JPL. “If we go to Uranus, we’ll see an oddball planet but normal satellites.”

Uranus has five major moons and 22 diminutive ones. Researchers suspect that these are the planet’s original satellites and might be a good example of what forms around an ice giant. Because the entire system — planet, rings and moons — is tipped over, Voyager 2 was able to see only one hemisphere of each moon. An entire half of the system remains hidden. “The satellites are really terra incognita,” Fletcher says. Point: Uranus.

But Neptune has Triton, a crown jewel of the outer solar system. “It’s a fascinating frozen paradise,” Hansen says. Like Saturn’s moon Enceladus (SN: 12/26/15, p. 23), Triton has erupting geysers, possibly linked to a subsurface ocean. The surface has been remodeled in the last 10 million years or so, which is pretty recent by solar system standards and hints at active geology. Point: Neptune.


You must log in or register to see images

EXOTIC MOONS Neptune's largest moon Triton (top) is an actively changing world and a distant cousin of Pluto. Miranda (bottom), a satellite of Uranus, harbors a hodge-podge of terrains and the tallest known cliff -- roughly 20 kilometers -- in the solar system.
FROM TOP: JPL-CALTECH/NASA, USGS; JPL-CALTECH/NASA


Triton is also not native to Neptune. The moon, which orbits in the opposite direction of Neptune’s rotation, was probably pilfered from the Kuiper belt, the field of frozen fossils where Pluto lives. “It’s a cousin to Pluto,” Hammel says. “Pluto and Triton are a wonderful matched pair to do comparative studies.” Double points for Neptune.

Both planets are such enigmas that a mission to one or the other will have plenty to teach planetary scientists. “Most folks would be happy to go to either one,” Simon says. The decision is more likely to come down to logistics: “What’s the sweet-spot mission that gets you the most science for your dollar.”

Getting to the ice giants won’t be easy. A spacecraft needs roughly a decade just to get to its destination. There are ways to shorten the trip such as getting a gravity kick from Jupiter or Saturn, but that depends on the planets being in the right place at the right time.

All things being equal, Uranus is closer and therefore easier (and cheaper) to get to. But if there’s a trajectory that grabs an assist from Jupiter or Saturn, Neptune might be the better bet. NASA’s Space Launch System, a powerful rocket scheduled to debut in late 2018, could shake things up. “It’s the largest rocket that this world has ever produced,” Green says. “It has incredible oomph for getting anything into space very fast.” A spacecraft launched atop the SLS might need only a few years to reach an ice giant.

Shortening the interplanetary cruise saves time and money, but the faster the spacecraft goes, the harder it must hit the brakes at journey’s end. “You have to throw off one of your science instruments to carry the extra fuel to slow down,” Hofstadter says. One solution is a daredevil maneuver known as “aerocapture,” where the planet’s atmosphere does most of the work. The spacecraft has to plow through the atmosphere deep enough to slow down but not so deep that it burns up. Some missions closer to home have used a gentler version of aerocapture to tweak trajectories. No one has used it for orbit insertion.

JPL’s task this year will be to evaluate those risks and explore mission options for each planet. “Both have stories to tell,” Hansen says. “You can’t go wrong — either one would be revolutionary.”

The New Horizons mission to Pluto showed what can be learned by flying a 21st century spacecraft past an unexplored world (SN: 12/26/15, p. 16). Researchers had a good idea of what might be waiting for them, but the reality exceeded expectations. “Pluto is a fabulous example of wherever we look, we discover amazing new things,” Fletcher says. “The frontier now lies out at the ice giants.”

Your anus. :emoticon-0136-giggl
 
1916: Einstein predicts Gravity Waves. 1917: He lays the foundation for Lasers. 2016: Gravity Waves discovered using Lasers.

I can't wait till his work is surpassed
 
I am a bit confused about the whole "gravity wave" thing, I understand how we have proved the existence but am unsure how it will help us study the universe as is being claimed.
I watched an interview with a woman from the team that proved the existence and she said they were just lucky enough to have been monitoring when the wave passed through.
How do they know when or where it was created and how will it make study of the universe any better if we just have to be "lucky" to monitor at the right time?
 
I am a bit confused about the whole "gravity wave" thing, I understand how we have proved the existence but am unsure how it will help us study the universe as is being claimed.
I watched an interview with a woman from the team that proved the existence and she said they were just lucky enough to have been monitoring when the wave passed through.
How do they know when or where it was created and how will it make study of the universe any better if we just have to be "lucky" to monitor at the right time?

its lucky there is nobody around whose likely to pronounce that you are too stupid to even understand and so thereby not worthy of an answer. Either way its all hocus pocus to me.
 
I am a bit confused about the whole "gravity wave" thing, I understand how we have proved the existence but am unsure how it will help us study the universe as is being claimed.
I watched an interview with a woman from the team that proved the existence and she said they were just lucky enough to have been monitoring when the wave passed through.
How do they know when or where it was created and how will it make study of the universe any better if we just have to be "lucky" to monitor at the right time?

Read this:

Black hole heavyweights triggered gravity wave event
LIGO team expects more detections later this year
BY
CHRISTOPHER CROCKETT
12:34PM, FEBRUARY 17, 2016
You must log in or register to see images

MAKING WAVES In the wake of a black hole collision, one bigger black hole (middle) is left behind as gravitational waves (blue and purple bands) ripple away, as seen in this still from a computer simulation. The colors near the black hole illustrate how gravity slows time (clocks would tick slower in the orange zone).

SXS

SPONSOR MESSAGE
The recent detection of gravitational waves is a stunning confirmation of Albert Einstein’s theories and the start of a new way of observing the universe. And at the center of it all is a celebrity couple: the first known pairing of black holes and the most massive ones found outside of the cores of galaxies.

On September 14, the Advanced Laser Interferometer Gravitational-Wave Observatory, or LIGO, sensed a disturbance in spacetime caused by two massive black holes smashing together (SN Online: 2/11/16). “It’s quite an incredible discovery,” says Vikram Ravi, an astrophysicist at Caltech. “They've seen objects that I guess none of us outside the collaboration imagined they might see.” Withmasses of 29 and 36 suns, these black holes were roughly twice as massive as the previous record holders.

Those masses actually aren’t too shocking, says Jeffrey McClintock, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. Very massive stars, though rare, should give rise to very massive black holes. What would have been more surprising, he says, is if LIGO failed to turn up any black holes this large. “If the nearest 1,000 stars had been investigated and we hadn’t found any planets, I would go back to church,” he says. “I feel the same way about two 30-solar-mass black holes.”

There are heavier black holes. Those monsters live in the centers of galaxies and can weigh billions of times as much as the sun. But they are different beasts entirely, probably built up as galaxies collide. Black holes such as those detected by LIGO are born when a massive star dies. And given their masses, “they likely formed in a fairly different environment than the Milky Way,” Ravi says.

How much mass a star ends up with at the end of its life depends partly on its store of elements heavier than helium. Atoms such as carbon, magnesium and iron present larger targets to the light that’s escaping a star. As light races outward, it bumps into these atoms, which in turn shove the surrounding gas along. The heavy elements behave like little snowplows attached to the photons, whittling away at the star’s mass as the light radiates into space. To make black holes as massive as LIGO’s, the original stars must have had fewer of these heavy elements than typical stars in our neighborhood, the LIGO team reports February 11 in the Astrophysical Journal Letters.

One possibility is that the stars formed early in the universe before heavy elements had a chance to accumulate. At the other extreme, the stars could have formed more recently in a relatively nearby (or local) and pristine pocket such as a dwarf galaxy. “With one observation, it’s impossible to say if it’s on one side of the continuum or the other,” says Vicky Kalogera, a LIGO astrophysicist at Northwestern University in Evanston, Ill.

The best estimates put the collision in a galaxy about 1.3 billion light-years away (give or take a few hundred million light-years) in the southern sky, roughly in the direction of the Magellanic Clouds, two satellites of the Milky Way. A third LIGO facility, such as one proposed for India, will help narrow down precise positions of future detections. So would a simultaneous burst of electromagnetic radiation from the location of a collision. LIGO has agreements with telescopes around the world (and in space) to keep an eye out for any flashes of light that occur at the same time as a gravity wave detection. For LIGO’s debut, no observatories reported anything definitive. But the Fermi gamma-ray satellite did see something interesting, astrophysicist Valerie Connaughton and colleagues report online February 14 at arXiv.org.

“We found a little blip that’s weaker than anything we’d normally look at,” says Connaughton, of the Universities Space Research Association in Huntsville, Ala. At 0.4 seconds after LIGO’s detection, Fermi recorded a very faint flash of gamma rays. “We’d normally never pick it out of the data,” she says. Researchers can’t pinpoint precisely where the burst came from, but the direction is roughly consistent with LIGO’s.

If the black hole collision did blast out gamma rays, theorists are going to have some explaining to do. Merging black holes shouldn’t release any electromagnetic radiation. It’s only when neutron stars get involved that telescopes should see flashes of light. During a recent phone call with colleagues about the Fermi data, “the theorists were already arguing with each other,” Connaughton says.

But before the theorists get too worked up, researchers need to figure out if what Fermi saw had anything to do with LIGO’s black holes. “We’re definitely not saying we saw an [electromagnetic] counterpart,” says Connaughton. It could be just a coincidence. During nearly 67 hours of observing in September, Fermi saw 27 similar gamma ray bursts. The only way to be certain is to wait for more LIGO detections. “If it’s real, it’s not going to be a one-off,” she says.

LIGO’s debut detection appeared during a test run in September; researchers are currently analyzing LIGO data accumulated during the four months that followed, and another science run is planned for later this year. The team is optimistic about their chances of finding more events. LIGO could have sensed a collision between two 30-solar-mass black holes out to about 6 billion light-years away. Given that researchers found one (so far) in 16 days of data, and assuming that’s a typical couple of weeks in the universe, then researchers estimate thatbetween two and 53 similar collisions occur per cubic gigaparsec per year. (One cubic gigaparsec is a volume of space roughly 4 billion light-years across.)

If those estimates are correct, scientists think LIGO could have detected up to about 10 more similar collisions in its first four months of operation, and possibly hundreds once the facility is running at full sensitivity. And that’s not including collisions of black holes with different masses, smashups of neutron stars or any other cosmic calamities that could rattle spacetime.

As more collisions are found, astronomers should get a better handle on where binary black holes form. “We may find they’re all in the local universe and none in the early universe,” Kalogera says. And that would tell researchers something about how massive star formation has changed throughout cosmic history. “We have high expectations now for a bigger sample in the near future.”
 
Einsteins work will be overtaken and consigned to the history books soon enough<ok>