joe biden for a start. i know he's senile but he said it. most that said it did so a fair while back so i don't remember all of them.
I've just watched that, and in my opinion, it's a poor critique where the host is guilty of many of the things he lays against the other bloke, in particular cherry picking, where he contradicts his own claims later in the same video. There was a big red flag when he tries to use skepticism in a derogatory manner in the title, when it is actually a component of the scientific method. EDIT: Just reading through the comments under the video, and there seem to be a fair few people pointing out some of the many flaws in his arguments.
That’s incredible. Do you have a link? Edit: I’ve found it. Thankfully he wasn’t in charge of UK vaccination policy, or responsible for giving me information when I had my vaccines. Odd to believe Biden over the people actually responsible for our vaccine programme, a mistake not many would have fallen for I hope.
Words fail me Just put him down That poor dog https://www.hulldailymail.co.uk/new.../tragic-pet-staffie-suffered-terribly-7496944
It's often offered as a 'defence' that the offender was brought up in the care system. Why is having professional trained parents with a lot of support seen as less than being brought up by amateurs trying to learn as they go? Surely it should add to rather than mitigate for the actions of ****s like the one in the article, and flag up failings with the care system?
I'm sure you're right, I haven't watched either of them as I find YouTube videos from people with one agenda or another, are generally very poor sources of information.
Can this **** be moved to another thread. It's ****ing ruined one of the few threads that was entertaining without ****ery.
My 'agenda' is to get a clearer, fact based view, so I tend to look for information that seems at odds with my general opinion, be that a scientific report, video or an article, and I then look for the source of the core data. It can be quite revealing. I'm not sure I see the point in posting a clip you haven't watched in response to another one you haven't watched though, nor how you can assume an 'agenda' or the quality of the information simply from the title, especially on such a complex topic.
i wasn't one that bellieved him. vaccines are generally subjected to long-term testing, i gather, so i decided to wait for the results of the long-term testing. while i was waiting, i acquired some antibodies and i'm no longer waiting. i also acquired more vitamin d and zinc, since they sounded like good things to have.
Vaccine development is a long, complex process, often lasting 10-15 years, and involves a combination of public and private involvement. The current system for developing, testing, and regulating vaccines developed during the 20th century, as the groups involved standardized their procedures and regulations. Government Oversight In the United States At the end of the 19th century, several vaccines for humans were developed. They were smallpox, rabies, plague, cholera, and typhoid vaccines. However, no regulation of vaccine production existed. On July 1, 1902, the U.S. Congress passed "An act to regulate the sale of viruses, serums, toxins, and analogous products," later referred to as the Biologics Control Act (even though "biologics" appears nowhere in the law). This was the first modern federal legislation to control the quality of drugs. This act emerged in part as a response to 1901 contamination events in St. Louis and Camden, which involved smallpox vaccine and diphtheria antitoxin. The Act created the Hygienic Laboratory of the U.S. Public Health Service to oversee the manufacture of biological drugs. The Hygienic Laboratory eventually became the National Institutes of Health. The Act established the government’s right to control the establishments where vaccines were made. The United States Public Service Act of 1944 mandated that the federal government issue licenses for biological products, including vaccines. After a poliovirus vaccine accident in 1954 (known as the Cutter incident), the Division of Biologics Standards was formed to oversee vaccine safety and regulation. Later, the DBS was renamed the Bureau of Biologics, and became part of the Food and Drug Administration. It is now known as the Center for Biologics Evaluation and Research. Outside of the United States In the European Union, the European Medicines Agency supervises regulation of vaccines and other drugs. A committee of the World Health Organization makes recommendations for biological products used internationally. Many countries have adopted the WHO standards. Stages of Vaccine Development and Testing In the United States, vaccine development and testing follow a standard set of steps. The first stages are exploratory in nature. Regulation and oversight increase as the candidate vaccine makes its way through the process. First Steps: Laboratory and Animal Studies Exploratory Stage This stage involves basic laboratory research and often lasts 2-4 years. Federally funded academic and governmental scientists identify natural or synthetic antigens that could help prevent or treat a disease. These antigens could include virus-like particles, weakened viruses or bacteria, weakened bacterial toxins, or other substances derived from pathogens. Pre-Clinical Stage Pre-clinical studies use tissue-culture or cell-culture systems and animal testing to assess the safety of the candidate vaccine and its immunogenicity, or ability to provoke an immune response. Animal subjects may include mice and monkeys. These studies give researchers an idea of the cellular responses they might expect in humans. They may also suggest a safe starting dose for the next phase of research, as well as a safe method of administering the vaccine. Researchers may adapt the candidate vaccine during the pre-clinical state to try to make it more effective. They may also do challenge studies with the animals, meaning they vaccinate the animals and then try to infect them with the target pathogen. Many candidate vaccines never progress beyond this stage, because they fail to produce the desired immune response. The pre-clinical stages often last 1-2 years and usually involve researchers in private industry. IND Application A sponsor, usually a private company, submits an application for an Investigational New Drug (IND) to the U.S. Food and Drug Administration. The sponsor describes the manufacturing and testing processes, summarizes the laboratory reports, and describes the proposed study. An institutional review board, representing an institution where the clinical trial will be conducted, must approve the clinical protocol. The FDA has 30 days to approve the application. Once the IND application has been approved, the vaccine is subject to three phases of testing. Next Steps: Clinical Studies with Human Subjects Phase I Vaccine Trials This first attempt to assess the candidate vaccine in humans involves a small group of adults, usually between 20-80 subjects. If the vaccine is intended for children, researchers will first test adults, and then gradually step down the age of the test subjects until they reach their target. Phase I trials may be non-blinded (also known as open-label in that the researchers and perhaps subjects know whether a vaccine or placebo is used). The goals of Phase 1 testing are to assess the safety of the candidate vaccine and determine the type and extent of immune response that the vaccine provokes. In a small minority of Phase 1 vaccine trials, researchers may use the challenge model, attempting to infect participants with the pathogen after the experimental group has been vaccinated. The participants in these studies are carefully monitored, and conditions are carefully controlled. In some cases, an attenuated, or modified, version of the pathogen is used for the challenge. A promising Phase 1 trial will progress to the next stage. Phase II Vaccine Trials A larger group of several hundred individuals participates in Phase II testing. Some individuals may belong to groups at risk of acquiring the disease. These trials are randomized and well controlled, and include a placebo group. The goals of Phase II testing are to study the candidate vaccine’s safety, immunogenicity, proposed doses, schedule of immunizations, and method of delivery. Phase III Vaccine Trials Successful Phase II candidate vaccines move on to larger trials, involving thousands to tens of thousands of people. These Phase III tests are randomized and double blind, and involve the experimental vaccine being tested against a placebo (the placebo may be a saline solution, a vaccine for another disease, or some other substance). One Phase III goal is to assess vaccine safety in a large group of people. Certain rare side effects might not surface in the smaller groups of subjects tested in earlier phases. For example, suppose that an adverse event related to a candidate vaccine could occur in 1 of every 10,000 people. To detect a significant difference for a low-frequency event, the trial would have to include 60,000 subjects, half of them in the control, or no vaccine, group (Plotkin SA et al. Vaccines, 5th ed. Philadelphia: Saunders, 2008). Vaccine efficacy is also tested. These factors might include 1) Does the candidate vaccine prevent disease? 2) Does it prevent infection with the pathogen? 3) Does it lead to the production of antibodies or other types of immune responses related to the pathogen? Next Steps: Approval and Licensure After a successful Phase III trial, the vaccine developer will submit a Biologics License Application to the FDA. The FDA will then inspect the factory where the vaccine will be made and approve the labeling of the vaccine. After licensure, the FDA will continue to monitor the production of the vaccine, including inspecting facilities and reviewing the manufacturer’s tests of lots of vaccines for potency, safety and purity. The FDA has the right to conduct its own testing of manufacturers’ vaccines. Post-Licensure Monitoring of Vaccines A variety of systems monitor vaccines after they have been approved. They include Phase IV trials, the Vaccine Adverse Event Reporting System, and the Vaccine Safety Datalink. Phase IV Trials Phase IV trial are optional studies that drug companies may conduct after a vaccine is released. The manufacturer may continue to test the vaccine for safety, efficacy, and other potential uses. VAERS The CDC and FDA established The Vaccine Adverse Event Reporting System in 1990. According to the CDC, VAERS' goal is “to detect possible signals of adverse events associated with vaccines.” (A signal in this case is evidence of a possible adverse event that emerges in the data collected.) About 30,000 events are reported each year to VAERS. Between 10% and 15% of these reports describe serious medical events that lead to hospitalization, life-threatening illness, disability, or death. VAERS is a voluntary reporting system. Anyone, such as a parent, a health care provider, or friend of the patient, who suspects an association between a vaccination and an adverse event, may report that event and information about it to VAERS. The CDC then investigates the event and tries to find out whether the vaccination actually caused the adverse event. The CDC states they monitor VAERS data to Detect new, unusual, or rare vaccine adverse events Monitor increases in known adverse events Identify potential patient risk factors for particular types of adverse events Identify vaccine lots with increased numbers or types of reported adverse events Assess the safety of newly licensed vaccines Not all adverse events reported to VAERS are actually caused by a vaccination. The two occurrences may be related only in time. And, it is probable that not all adverse events resulting from vaccination are reported to VAERS. The CDC states that many adverse events, such as swelling at the injection site, are underreported. Serious adverse events, according to the CDC, “are probably more likely to be reported than minor ones, especially when they occur soon after vaccination, even if they may be coincidental and related to other causes.” VAERS has successfully identified several rare adverse events related to vaccination. Among them are An intestinal problem after the first vaccine for rotavirus was introduced in 1999 Neurologic and gastrointestinal diseases related to yellow fever vaccine According to Plotkin et al., VAERS identified a need for further investigation of MMR association with a blood clotting disorder, encephalopathy after MMR, and syncope after immunization (Plotkin SA et al. Vaccines, 5th ed. Philadelphia: Saunders, 2008). Vaccine Safety Datalink The CDC established this system in 1990. The VSD is a collection of linked databases containing information from large medical groups. The linked databases allow officials to gather data about vaccination among the populations served by the medical groups. Researchers can access the data by proposing studies to the CDC and having them approved. The VSD has some drawbacks. For example, few completely unvaccinated children are listed in the database. The medical groups providing information to VSD may have patient populations that are not representative of large populations in general. Additionally, the data come not from randomized, controlled, blinded trials, but from actual medical practice. Therefore, it may be difficult to control and evaluate the data. Rapid Cycle Analysis is a program of the VSD, launched in 2005. It monitors real-time data to compare rates of adverse events in recently vaccinated people with rates among unvaccinated people. The system is used mainly to monitor new vaccines. Among the new vaccines monitored in Rapid Cycle Analysis are the conjugated meningococcal vaccine, rotavirus vaccine, MMRV vaccine, Tdap vaccine, and the HPV vaccine. Possible associations between adverse events and vaccination are then further studied. https://historyofvaccines.org/vacci...de/vaccine-development-testing-and-regulation
Part of the problem is that mistakes and misrepresentations that were clearly made, add fuel to the conspiracy theorists. Simply denying that these things occurred is not liable to change many peoples minds, as they are liable to have seen it for themselves.